

ME STANDARD

ELECTRIC BOILER

OPERATING & MAINTENANCE MANUAL

MODELS - 90 - 120 - 150 - 180 - 210 - 245 - 280 - 315 - 350 - 385 - 420 455 - 490 - 525 - 560 - 595 - 630

09/2011 CODE: 560955 CE Directive 2006/95/CEE British Standard EN 60335-1 (C 73800)

CONTENTS

1.0	INTRODUCTION	
1.1	Description	3
1.2	Performance	4
1.3	Dimensions	4
1.4	Electrical power requirements	4
1.5	8	5
1.6	Orientation	6
2.0	INSTALLATION	
2.1	Procedure	7
2.2	Essential accessories	7
2.3	31	8
2.4	Precautions	9
2.5	5	10
2.6	Commissioning	10
3.0	ELECTRICAL ARRANGEMENTS	
3.1	Control panel arrangement	11
3.2	Control circuitry	12
3.3	Electrical power circuitry	13
3.4	Fuse and overload protection	13
3.5		14
3.6		14
3.7	. 3	15
3.8	Alarm signals	15
4.0	DELIVERY and OFF-LOADING	16
5.0	MAINTENANCE	16
6.0	IDENTIFICATION OF SPARE PARTS	17
7.0	FAULT DETECTION	17
	GUARANTEE	18
	DECLARATION OF CONFORMITY	19

1.0 INTRODUCTION

1.1 Description

The **ME STANDARD electric boiler** is suitable for a variety of types of space heating and indirect domestic hot water – covering sealed circuits from 0.5BARS to 7.0BARS working pressure.

The **ME STANDARD electric boiler** electric boiler always requires earthing, under protection index IP21/1K 08.

The **ME STANDARD electric boiler** electric boiler is designed and manufactured according to the following:-

- EN Decree 95-1081 control of boiler materials and electrical supply voltage used in order to conserve the safety of persons and animals which might be in the vicinity
- European Directive 2006/95/CEE covering low voltage system application
- BS EN 60335-1 class C73800, part 1, general rules

THE STANDARD ELECTRIC BOILER

- Outputs from 90kW to 630kW
- Outputs above 630kW to 980kW by special order
- Maximum working pressure 7BARS, Test pressure 10BARS
- Maximum working temperature 100°C, limit 110°C
- 50mm thick glass silk insulation with MO fire classification cladding
- Hand reset limit thermostat at 110°C
- · Resistance to earthing shock not less than 1 megohm

INCOLLOY IMMERSION HEATERS - 90kW to 180kW boilers

- Individual heater elements 80-200mm diameter
- Individual elements 30kW, 415V, 3phase & earth
- Vertical access requirement 2010mm

INCOLLOY IMMERSION HEATERS - 210kW to 630kW

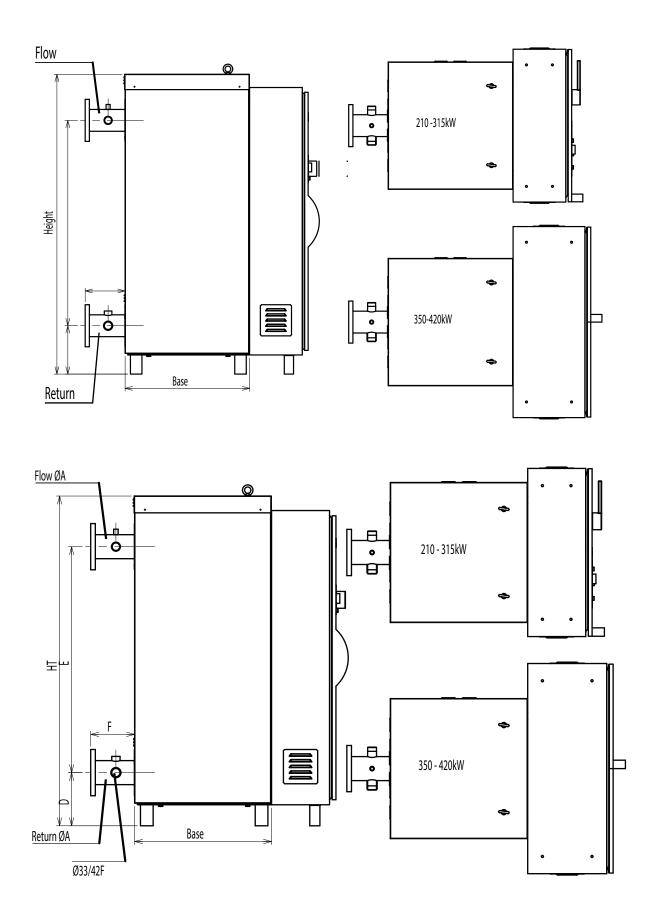
- Individual heater elements 80-200mm diameter
- Individual elements 35kW, 415V, 3phase & earth
- Vertical access requirement 2050mm

CONTROL PANEL

- Control cabinet fixed to the boiler
- Enabling from remote electronic or hand operation
- Three cartridge fuses per each step control
- · Three contactors, one per step
- · One transformer for the control circuit
- One main isolator with manual lock
- One 'alive' lamp indicating power on
- One 'lock-out' lamp indicating boiler stopped
- One digital controller
- One set of terminal connections
- The control panel can
 - (i) be located in any of three positions on the boiler
 - (ii) have the panel door in either of two hinge positions
 - (iii) be provided with variable control & output

1.2 Perfomance

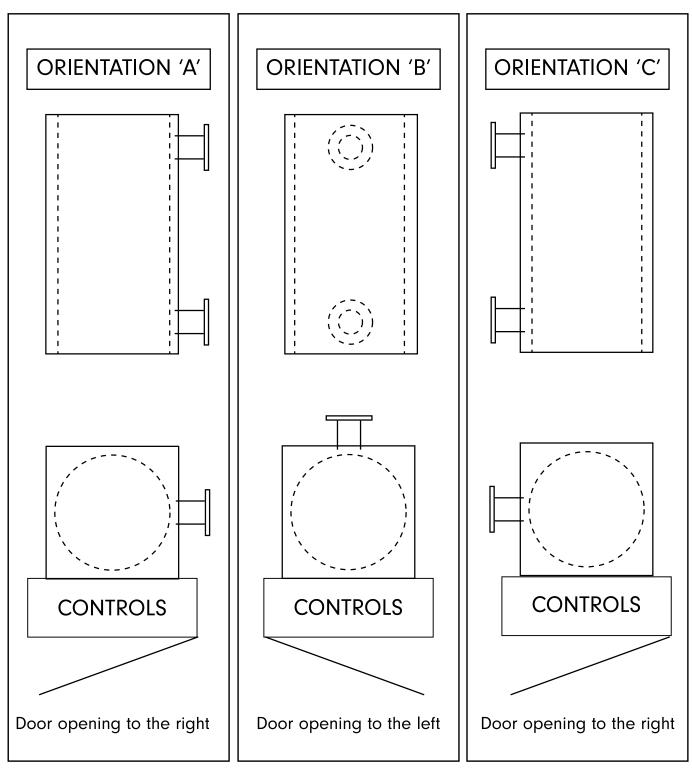
MODEL		90	120	150	180	210	245	280	315	350	385	420	455	490	525	560	595	630
Maximum Output	kW	90	120	150	180	210	245	280	315	350	385	420	455	490	525	560	595	630
Efficiency	%	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9
No of Immersion heaters		3	4	5	6	6	7	8	9	10	11	12	13	14	15	16	17	18
Min flow rate	l/sec	0.6	0.8	0.8	1.1	1.7	1.7	1.7	1.7	2.2	2.2	2.2	2.8	2.8	2.8	2.8	3.6	3.6
Max flow rate	l/sec	5.0	5.0	10.0	10.0	11.7	11.7	11.7	11.7	11.7	11.7	11.7	19.4	19.4	19.4	19.4	19.4	19.4
Max pressure dro	kPA	8	8	8	8	16	16	16	16	16	16	16	16	16	16	16	16	16
Flow/return connections	mm	80	80	80	80	100	100	100	100	100	100	100	150	150	150	150	150	150
Dry weight kgs		117	121	125	129	233	238	243	248	253	258	263	367	372	377	382	387	392
Water content	litres	128	128	128	128	283	283	283	283	283	283	283	395	395	395	395	395	395
Total weight	kgs	280	285	295	320	430	435	450	460	505	510	520	650	650	650	670	670	690


1.3 Dimensions

MODEL	90	120	150	180	210	245	280	315	350	385	420	455	490	525	560	595	630
Depth	mm 1030	1030	1030	1030	1180	1180	1180	1180	1280	1280	1280	1360	1360	1360	1360	1360	1360
Width	mm 600	600	600	600	800	800	800	800	1000	1000	1000	1000	1000	1000	1000	1000	1000
Height	mm 1380	1380	1380	1380	1570	1570	1570	1570	1700	1700	1700	1900	1900	1900	1900	1900	1900
Access above	mm 900	900	900	900	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Access front	mm 1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Access rear	mm 750	750	750	750	750	750	750	750	750	750	750	750	750	750	750	750	750
Access side	mm 500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500
Access other side	mm 100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

1.4 Electrical Power Requirements 415 volts, 3 phase, 50Hz

MODEL		90	120	150	180	210	245	280	315	350	385	420	455	490	525	560	595	630
OUTPUT STEP ONE																		
Power	kW	30	60	60	60	70	105	105	105	140	140	140	175	175	175	210	210	210
Fuse	amps	63	125	125	125	125	160	160	160	250	250	250	315	315	315	400	400	400
OUTPUT STEP TWO)																	
Power	kW	30	30	60	60	70	70	105	105	140	140	140	175	175	175	175	175	219
Fuse	amps	63	63	125	125	125	125	160	160	250	250	250	315	315	315	315	315	400
OUTPUT STEP THR	EE																	
Power	kW	30	30	30	60	70	70	70	105	105	105	140	140	140	175	175	210	210
Fuse	amps	63	63	63	125	125	125	125	160	160	160	250	250	250	315	315	400	400


1.5 Drawings

ME STANDARD

ELECTRIC BOILER

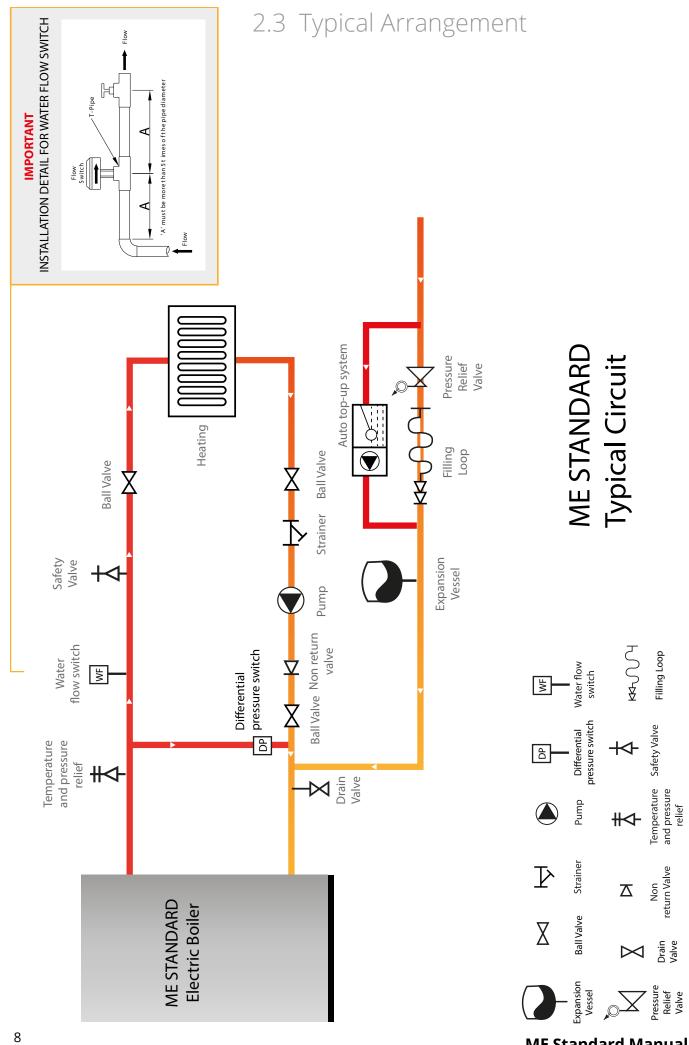
INLET/OUTLET ORIENTATION with Control Panel

2.0 INSTALLATION

2.1 Procedure

- Position the boiler squarely on the prepared base
- Fit the correct accessories to the boiler connections
- Connect the boiler to the pipework system
- Connect the boiler to the isolated electrical supply
- Fill the boiler with fresh, clean water
- Check that the immersion heaters are electrically isolated from the boiler. If the isolation is less than 2mega-ohms, the bridge must be found and rectified.
- Check the operation of the main control panel isolator, and of the overloads serving the immersion heaters
- Check the operation and the correct direction of rotation of the circulating pump
- Check, with the circulation pump stopped, that the water flow switch over-rides the immersion heaters through their relays and also brings on the relevant alarm light
- Check the setting and operation of the immersion heater step controls
- Switch off the immersion heaters using the main control panel isolator
- Check that all the cartridge fuses are sound
- Double check that all the immersion heaters receive the common voltage.
 Repeat the check after several hours run.
 Any defect in voltage can destroy the heaters and invalidate the guarantee.

A. automatic


2.2 Essential Accessories

The following items are required:-

- A. One automatic air vent with isolating valve
- B. One 7 BAR safety valve and one 7 BAR temperature and pressure relief valve
- C. One shunt pumpprotected by overloads(0.37A to 1.4A adjustable)and run + fault lamps
- D. Differential pressure switch
- E. One drain ball valve
- F. One water flow switch

air vent	===	3
B. safety valve temperature and pressure relief valve C		-
shunt pump		
Differential pressure switch		
F. water flow switch		
65		
3.2	E drain ball valve.	

RECOMMENDED WA	TER FLO	N SETTING	GS (l/sec)	
Pipeline sizes: mm	32	40	50	65
Minimum range:	0.35-0.47	0.53-0.72	0.61-0.83	1.0-1.4
Maximum setting	1.0	1.6	1.9	3.2

2.4 Precautions

The Multi-elec Standard requires an installation conforming to:

- Directive 2009/125/CE (Eco-Design)
- Directive 2010/30/UE (Energy Labelling)
- Directive 2014/35/UE (Low Voltage)
- Directive 2014/30/UE (Electromagnetic compatibility)
- Directive 2014/68/UE (Pressure equipment directive)
- The electric boilers operate at more than 99.5%GCV efficiency
- They require minimal maintenance, are silent & are compact.
- With wind or water electric generation, they use green energy.

To release a large amount of heat to water heating systems:

- A: They need a minimum static water pressure of 1 BAR when cold. When hot, this pressure will rise and must not exceed 6 BARS for the normal boiler (higher pressures available)
- B: They need a minimum water flow rate which is given in the boiler manual. Flexiheat offer a shunt pump set for each boiler which is fitted in the same pipe line as the boiler. The pump will exceed the minimum water flow rate.
- C: They must not exceed maximum water flow rate which is given in the boiler manual.
- D: In case the pump fails or a valve is closed, Flexiheat offer a water flow switch fitted in the same pipeline as the boiler and set to just below maximum flow. If the switch registers maximum flow, the boiler stops
- E: We recommend an automatic pressurisation unit, with low and high pressure limits to safeguard the electric boiler via its control panel. The unit will include a fast-fill loop to initially fill the system.
- F: The system should be isolated, flushed, filled and treated separately from the boiler. Fill the boiler with clean, pure water only.

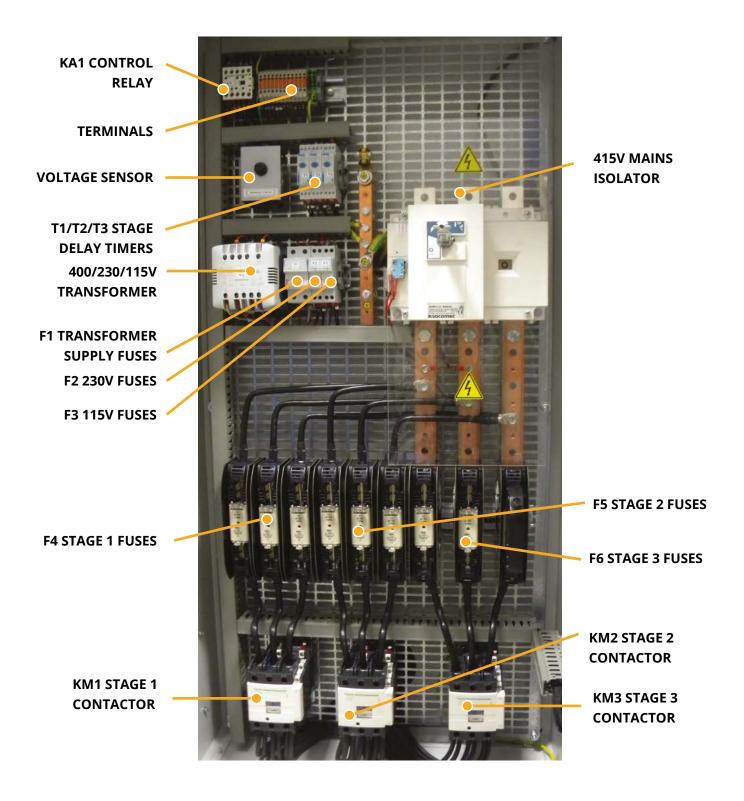
Detailed water treatment of Multi-elec electric boilers fitted with adjoining balancing * sedimentation vessel

- Filling the outgoing secondary through the BSV pipework, the water can be variable due to its source and it can be aggressive. It may need neutralisation by chemical additives or even the use of Plate Heat Exchanger to divide the system out.
- The secondary water needs to be introduced though the BSV drain point or cold feed point.
- The electric boiler(s) need clean pure water introduced from the boiler drain valves
- The strainers, fitted in the secondary, need to be fitted in returns to the BSV where they capture the most part of the deposits.
- The strainers, fitted in the boiler returns, need to be of fine extended secondary circuits, mesh, to capture any overflow of deposit from the secondary circuits.

2.5 Boiler room arrangements

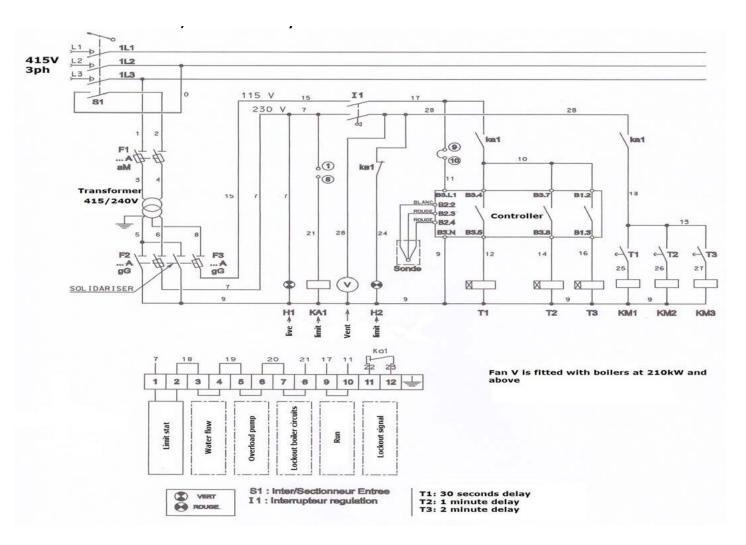
The Multi-elec Standard must be installed:

- In an adequately-ventilated boiler room with ambient temperature below 30°C and relative humidity maintained between 30% and 80% and where condensation does not occur
- In a non-corrosive atmosphere
- In a non-explosive atmosphere
- Where there is good access to the boiler position for installation and maintenance
- · Where there is good access for delivery, off-loading and positioning
- Using similar materials in the in the pipework, and avoiding materials leading to electrolytic action and system deterioration

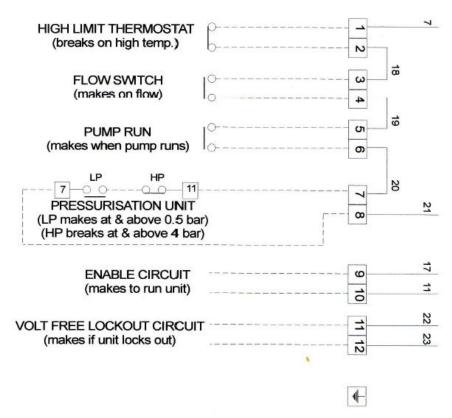

The Multi-elec Compacte is not suitable for external installation

2.6 Commissioning

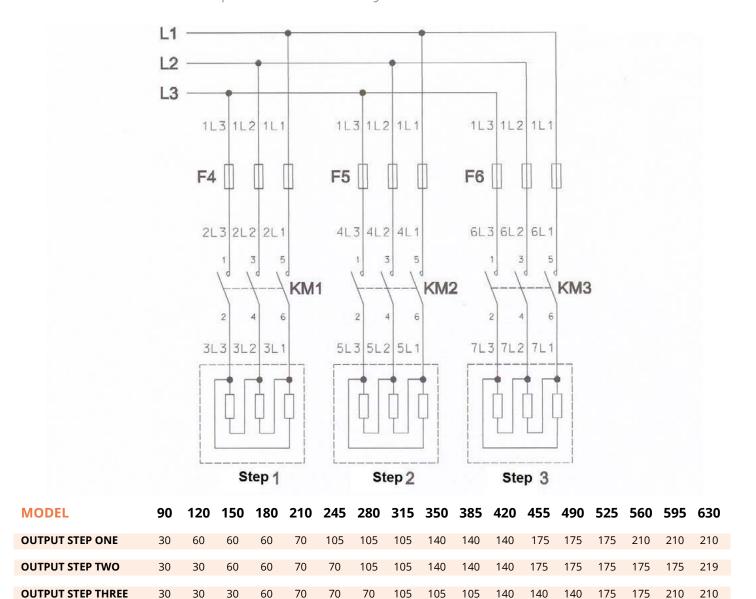
- The boiler must be completely full of water before the heating elements are switched on.
 To ensure 100% filling, manual and automatic vents must be in effective positions where complete air clearance can be guaranteed.
- The boiler can be filled with water by connecting a fill hose to the boiler drain valve and partly opening the valve.
- The boiler safety valve can also be used firstly to vent the boiler at filling and, secondly, ensuring the blow-down facility of the valve is clear in case of use.
- · Commissioning is recommended by a suitably qualified engineer


3.0 ELECTRICAL ARRANGEMENTS

3.1 Control Panel Arrangement



ME Standard Manual


3.2 Control Circuitry

EXTERNAL CONTROLS

3.3 Electrical power circuitry

3.4 Fuse and overload protection

Fuse ratings and type: – industrial cylindrical cartridge

MODEL 90- 280kW

FUSES F1 1A type aM, F2 – 1A type gG, F3 – 0.5A type gG

MODEL 90- 280kW

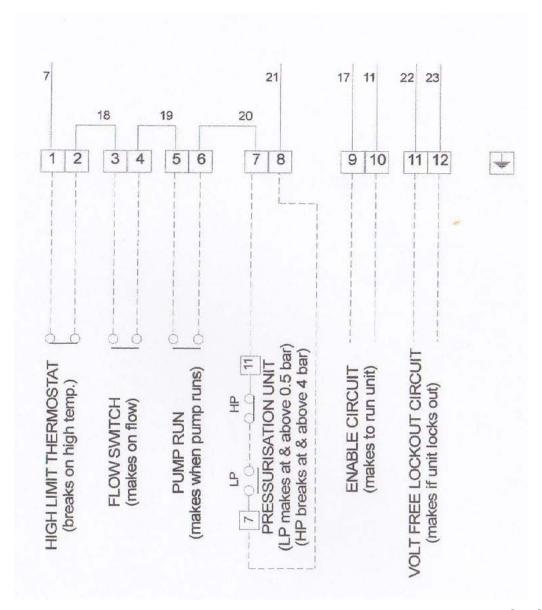
FUSES F1 1A type aM, F2 – 1A type gG, F3 – 0.5A type gG

FUSES F4-F6 Type 22 x 58 : 63A type gG

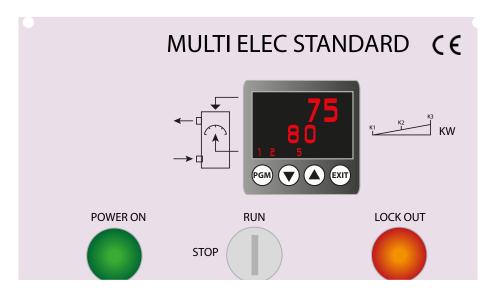
Type 0: 125A type gG Type 1: 160A type gG

Type 2: 250, 315 & 400A type gG

Amperage requirement – insert table from earlier


3.5 Electrical Circuit

Electrical circuit


- The Standard electric boiler must be provided with 415volts and without neutral wiring
- The electrical wiring cables must be sized by a qualified electrician in order to conform to BS C 15100 and satisfying load, length of run and prevention of short circuit.
- The installation must be tested for automatic power failure in the event of emergency power cut, heater lock-out or error in the neutral layout.
- All electrical equipment shall satisfy IP21/IK08 Class 1
- The immersion heaters shall only receive electrical power if they are fully immersed in water; otherwise the guarantee on the heaters will not apply

ALL ELECTRICAL WIRING MUST BE CORRECTLY EARTHED

3.6 Terminal connection drawing

3.7 Operation of the digital controller

Factory settings (primary heating circuit)

Flow temperature - 80degC

Maximum flow temperature setting - 95degC

Minimum flow temperature setting - 20degC

Time delay T1 – 30 seconds

Time delay T2 - 1 minute

Time delay T3 - 2 minutes

digital controller has numbers or message, touch settings

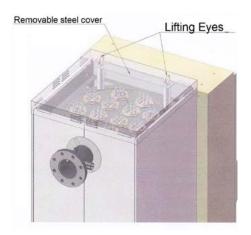
- + touch raise settings, touch lower settings
- 1. The Panel has a registration label
- 2. The wiring is capable of a maximum current of 23kA
- 3. Neutral panel wiring is not required
- 4. The Panel is protected by isolators, circuit breakers and fuses.
- 5. Earth wiring is essential
- One week after commissioning, all connectors on immersion heaters and incoming electrical supplies – need to be checked. This should be repeated annually.
- 7. Manufacturing tests include heat output and control circuitry
- 8. The boilers should not be installed or operated in corrosive, explosive or humid atmosphere
- 9. Adequate natural ventilation is required. 550mm2 x kW free area at high and low level is recommended

3.8 Alarm Signals

On Alarm, light (7) shows and the following messages appear on (1)

- < PFO > Lock-out or power cut
- < HA > High temperature lock-out
- < LA > Low temperature alarm

ME Standard Manual


4.0 DELIVERY/OFF-LOADING

It is recommended that the STANDARD electric boiler is transported and, if necessary, stored on the pallet on which it is delivered from the factory.

If temporarily stored, the surroundings should be maintained at temperatures below 80°C, and without condensation at relative humidities between 30% and 80%

Manhandling the STANDARD electric boiler into position requires:-

- (a) Qualified, skilled manpower
- (b) Use of a pallet trolley or a fork lift truck
- (c) Use of the lifting eyes provided on the boiler and tested of lifting beams

5.0 MAINTENANCE

Effective maintenance must aim at preventing:-

- a). a reduction in the movement of water circulation through the boiler this can result in the formation of sediment or limescale on the boiler immersion heater elements
- b). pockets of high temperature water across the boiler immersion heater elements resulting in their destruction by overheating
- c). accumulation of sediment or limescale within the boiler, particularly on or around the boiler immersion heater elements overcoming these developments by the introduction of fresh, clean water without any inhibitor or de-scaling agent

Minimum maintenance periods

A) Monthly maintenance

- i) Check operation of the automatic air vent
- ii) Check operation of the water flow switch
- iii) Check operation of the safety valve

B) Annual maintenance

- i) Carry out the monthly checks
- ii) Check all the electric control functions
- iii) Check all pipework joints are water-tight
- iv) Drain off small amount of boiler water content and check for condition

C). 4-yearly maintenance

- i) Carry out the annual maintenance
- ii) Isolate the boiler safely from all services
- iii) Drain the boiler of water and open up for inspection
- iv) Check for all maintenance requirements and remedy as necessary
- v) Close and seal the boiler, fill with fresh clear water through drain outlet
- vi) Pressure test, then repeat annual maintenance procedure

07 SPARES

Controller	790220
Flow sensor	583027
30kW immersion heater	2534
35kW immersion heater	2536
Limit thermostat	581104
Water flow switch	480230

08 FAULT DETECTION

Before making any physical check, switch off the power FAULT CHECK

The 'live' light is out

Check for incoming power

Check fuses F1 and F2

Check the 'live' bulb

The controller screen is out

Check fuse F3

Step 1 or Step 2 light is out

Change the bulb

The 'red' light is lit

Check the limit thermostat

Check the water flow switch action

Check the circulating pump overload

If the fault remains Call in a qualified service engineer

ME Standard Manual

